On the functional equation of generalized pseudomediality

Adrian Petrescu
"Petru-Maior" University of Târgu-Mureş, Romania
apetrescu@upm.ro

Abstract

Based on $D_{i, j}$ and D_{i-j} conditions (see [1]) we give a direct and straightforward method to solve the functional equation of generalized pseudomediality on quasigroups.

2000 Mathematics Subject Classification: 39B52, 20N05, 20N15.
In this paper we solve the functional equation of generalized pseudomediality on quasigroups

$$
\begin{equation*}
\alpha_{1}\left(\alpha_{2}(x, y), \alpha_{3}(z, u)\right)=\alpha_{4}\left(\alpha_{5}\left(\alpha_{6}(x, z), y\right) u\right) \tag{1}
\end{equation*}
$$

where x, y, z, u are taken from an arbitrary set A and α_{i} are quasigroup operations on A.

Sokhats'kyi [3] proved that every quadratic parastrophically uncancelable functional equation for four object variables is parastrophically equivalent to the functional equation of mediality (for this equation see [2]) or the functional equation of pseudomediality. He solved this equation using the functional equation of generalized associativity (for this equation see [2]).

The method we used is an example of the application of our results developed in [1].

Let $\alpha_{1}, \ldots, \alpha_{6}$ be a six quasigroup operations on A and forming a solution of the functional equation (1). We define $\alpha: A^{4} \rightarrow A$ by

$$
\begin{equation*}
\alpha(x, y, z, u)=\alpha_{1}\left(\alpha_{2}(x, y), \alpha_{3}(z, u)\right)=\alpha_{4}\left(\alpha_{5}\left(\alpha_{6}(x, z), y\right), u\right) \tag{2}
\end{equation*}
$$

It is obvious that (A, α) is 4-quasigroup and conditions $D_{1,2}, D_{3,4}$ and D_{1-3} are fulfilled in (A, α) (see [1]).

Theorem 1. In a 4-loop (A, α) condition $D_{1,2} \& D_{3,4} \& D_{1-3}$ holds iff $\alpha(x, y, z, u)=$ $y x z u$ where (A, \cdot) is a binary group.

Proof. Suppose that in 4-loop (A, α) condition $D_{12} \& D_{3,4} \& D_{1-3}$ holds and let e be a unit in this loop. We define

$$
\begin{equation*}
x \cdot y=\alpha(e, e, x, y) \tag{3}
\end{equation*}
$$

Then (A, \cdot) is a binary loop with the unit e. From

$$
\alpha(e, e, z, u)=\alpha(e, e, e, \alpha(e, e, z, u))
$$

by condition $D_{3,4}$ we obtain

$$
\begin{equation*}
\alpha(x, y, z, u)=\alpha(x, y, e, z u) \tag{4}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \left.\alpha(x, y, e, z u)=\alpha(e, y, z u) \quad \text { (condition } D_{1-3}\right) \\
& \quad=\alpha(e, y, e, x(z u)) \quad(\text { by }(4)) \\
& \quad=\alpha(y, e, e, x(z u)) \quad\left(\text { condition } D_{1,2}\right) \\
& \quad=\alpha(e, e, y, x(z u)) \quad\left(\text { condition } D_{1-3}\right) \\
& \quad=y(x(z u)) . \quad(\text { by }(4))
\end{aligned}
$$

Thus

$$
\begin{equation*}
\alpha(x, y, z, u)=y(x(z u)) \tag{5}
\end{equation*}
$$

Putting $z=u=e$ in (5) we get

$$
\begin{equation*}
\alpha(x, y, e, e)=y x \tag{6}
\end{equation*}
$$

From

$$
\alpha(x, y, e, e)=\alpha(\alpha(x, y, e, e), e, e, e)
$$

by condition $D_{1,2}$ we have

$$
\begin{equation*}
\alpha(x, y, z, u)=\alpha(y x, e, z, u) \tag{7}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \alpha(y x, e, z, u)=\alpha(e, y x, z, u) \quad\left(\text { condition } D_{1,2}\right) \\
& \quad=\alpha(z, y x, e, u) \quad\left(\text { condition } D_{1-3}\right) \\
& \quad=\alpha((y x) z, e, e, u) \quad(\text { by }(7)) \\
& \quad=\alpha((y x) z, e, u, e) \quad\left(\text { condition } D_{3,4}\right) \\
& \quad=\alpha(e,(y x) z, u, e) \quad\left(\text { condition } D_{1,2}\right) \\
& \quad=\alpha(u,(y x) z, e, e) \quad\left(\text { condition } D_{1-3}\right) \\
& =((y x) z) u \quad(\text { by }(7))
\end{aligned}
$$

Thus

$$
\begin{equation*}
\alpha(x, y, z, u)=((y x) z) u \tag{8}
\end{equation*}
$$

From (5) and (8) we have

$$
\begin{equation*}
y(x(z u))=(y x) z) u \tag{9}
\end{equation*}
$$

Putting $u=e$ in (9) we obtain

$$
y(x z)=(y x) z
$$

Therefore (A, \cdot) is a group and $\alpha(x, y, z, u)=y x z u$
The converse is obvious.

Theorem 2. The set of all solutions of the functional equation of generalized pseudomediality over the set of quasigroup operations on an arbitrary set A is described by the realtions

$$
\begin{array}{ll}
\alpha_{1}(x, y)=F_{1}(x)+F_{2}(y) & \alpha_{2}(x, y)=F_{1}^{-1}\left(F_{3}(y)+F_{4}(x)\right) \\
\alpha_{3}(x, y)=F_{2}^{-1}\left(F_{5}(x)+F_{6}(y)\right), & \alpha_{4}(x, y)=F_{7}(x)+F_{6}(y) \tag{10}\\
\alpha_{5}(x, y)=F_{7}^{-1}\left(F_{3}(y)+F_{8}(x)\right), & \alpha_{6}(x, y)=F_{8}^{-1}\left(F_{4}(x)+F_{5}(y)\right)
\end{array}
$$

where $(A,+)$ is an arbitrary group and F_{1}, \ldots, F_{8} are arbitrary substitutions of the set A.

Proof. Let $\alpha_{1}, \ldots, \alpha_{6}$ be six quasigroup operations on A and forming a solution of equation (1). We define $\alpha: A^{4} \rightarrow A$ by (2). From the above results if follows that $\alpha(x, y, z, u)=T_{2}(y)+T_{1}(x)+T_{3}(z)+T_{4}(u)$, where $(A,+)$ is a group with zero element $0=T_{1}\left(a_{1}\right)=T_{2}\left(a_{2}\right)=T_{3}\left(a_{3}\right)=T_{4}\left(a_{4}\right), T_{i}$ being translations by $a=\left(a_{1}^{4}\right) \in A^{4}$ in (A, α) (for details see [1] and [2]). Putting $z=a_{3}$ and $u=a_{4}$ in (2) we get

$$
\begin{equation*}
\alpha_{1}\left(\alpha_{2}(x, y), \alpha_{3}\left(a_{3}, a_{4}\right)\right)=\alpha_{4}\left(\alpha_{5}\left(\alpha_{6}\left(x, a_{3}\right), y\right), a_{4}\right)=T_{2}(y)+T_{1}(x) . \tag{11}
\end{equation*}
$$

The mappings $f(x)=\alpha_{1}\left(x, \alpha_{3}\left(a_{3}, a_{4}\right)\right), f_{1}(x)=\alpha_{6}\left(x, a_{3}\right)$ and $f_{2}(x)=\alpha_{4}\left(x, a_{4}\right)$ are substitutions of the set A. From (11) we obtain

$$
\alpha_{2}(x, y)=f^{-1}\left(T_{2}(y)+T_{1}(x)\right)
$$

and

$$
\alpha_{5}(x, y)=f_{2}^{-1}\left(T_{2}(y)+T_{1}\left(f_{1}^{-1}(x)\right)\right) .
$$

For $x=a_{1}$ and $y=a_{2}$ in (2) we have

$$
\alpha_{1}\left(\alpha_{2}\left(a_{1}, a_{2}\right), \alpha_{3}(z, u)\right)=\alpha_{4}\left(\alpha_{5}\left(\alpha_{6}\left(a_{1}, z\right), a_{2}\right), u\right)=T_{3}(z)+T_{4}(u)
$$

and thus

$$
\alpha_{3}(z, u)=g^{-1}\left(T_{3}(z)+T_{4}(u)\right)
$$

where

$$
g(x)=\alpha_{1}\left(\alpha_{2}\left(a_{1}, a_{2}\right), x\right)
$$

and

$$
\alpha_{4}(z, u)=T_{3}\left(g_{1}^{-1}(z)\right)+T_{4}(u)
$$

where

$$
g_{1}(x)=\alpha_{5}\left(\alpha_{6}\left(a_{1}, x\right), a_{2}\right) .
$$

Finally, if we put $y=a_{2}$ and $u=a_{4}$ in (2) then we have

$$
\alpha_{1}\left(\alpha_{2}\left(x, a_{2}\right), \alpha_{3}\left(z, a_{4}\right)\right)=\alpha_{4}\left(\alpha_{5}\left(\alpha_{6}(x, z), a_{2}\right), a_{4}\right)=T_{1}(x)+T_{3}(z)
$$

and thus

$$
\alpha_{1}(x, z)=T_{1}\left(h_{1}^{-1}(x)\right)+T_{3} h_{2}^{-1}(z)
$$

for $h_{1}(x)=\alpha_{2}\left(x, a_{2}\right)$ and $h_{2}(x)=\alpha_{3}\left(x, a_{4}\right)$,

$$
\alpha_{6}(x, z)=h^{-1}\left(T_{1}(x)+T_{3}(z)\right)
$$

where $h(x)=\alpha_{4}\left(\alpha_{5}\left(x, a_{2}\right), a_{3}\right)$.
It is easy to prove that

$$
f \circ h_{1}=T_{1}, g \circ h_{2}=T_{3}, f_{2} \circ g_{1}=T_{3} \quad \text { and } \quad h \circ f_{1}=T_{1}
$$

Taking into account the above results we have

$$
\begin{array}{ll}
\alpha_{1}(x, z)=f(x)+g(z), & \alpha_{2}(x, y)=f^{-1}\left(T_{2}(y)+T_{1}(x)\right) \\
\alpha_{3}(z, u)=g^{-1}\left(T_{3}(z)+T_{4}(u)\right), & \alpha_{4}(z, u)=f_{2}(z)+T_{4}(u) \\
\alpha_{5}(x, y)=f_{2}^{-1}\left(T_{2}(y)+h(x)\right), & \alpha_{6}(x, z)=h^{-1}\left(T_{1}(x)+T_{3}(z)\right) .
\end{array}
$$

The converse is clear.

References

[1] Petrescu A., $G-n$-quasigroups, ICTAMI 2007.
[2] Petrescu A., $G-n$-quasigroup and functional equations on quasigroups, ICTAMI 2007.
[3] Sokats'kyi F.M., On the classification of functional equations on quasigroups, Ukrain. Math. Journal, Vol. 56, No. 9 (2004), 1259-1266.

